

Architecture Independent Performance Characterization and Benchmarking
for Scientific Applications

Erich Strohmaier, Hongzhang Shan
Future Technology Group

Lawrence Berkeley National Laboratory
One Cyclotron Road, CA 94720
{estrohmaier, hshan@lbl.gov}

Abstract

A simple, tunable, synthetic benchmark with a per-
formance directly related to applications would be of
great benefit to the scientific computing community. In
this paper, we present a novel approach to develop such
a benchmark. The initial focus of this project is on data
access performance of scientific applications. First a
hardware independent characterization of code per-
formance in terms of address streams is developed. The
parameters chosen to characterize a single address
stream are related to regularity, size, spatial, and tem-
poral locality. These parameters are then used to im-
plement a synthetic benchmark program that mimics the
performance of a corresponding code. To test the valid-
ity of our approach we performed experiments using five
test kernels on six different platforms. The performance
of most of our test kernels can be approximated by a
single synthetic address stream. However in some cases
overlapping two address streams is necessary to achieve
a good approximation.

1. Introduction
When benchmarking computer systems ultimately the

performance of our scientific application codes is most
important to us. However using them for performance
studies requires an enormous amount of time and effort
and studies based on them tend to have limited architec-
tural scope. This makes fair comparisons across architec-
tural domains cumbersome, as they require a substantial
effort for code adaptation and optimization. The amount
of available results therefore tends to be limited. Applica-
tion codes also tend to have a very limited meaningful
life-time as benchmarks, as the actual applications tend to
evolve and change at a rapid pace making special
benchmark versions obsolete. Recent examples for this
type of benchmarking efforts include SPEC HPC [20]
and The Matrix [4].

Synthetic benchmarks are much easier to develop,
maintain, and use. Synthetic benchmarks such as Linpack
[1], NAS Parallel Benchmarks [2], PARKBENCH [3], or
SPLASH2 [9] have been developed based on specific
codes, which were selected ad-hoc. However, they only
reflect the performance of a very narrow set of applica-
tions at best and cannot serve as general benchmark
against which the progress in real application perform-
ance could be judged. It is therefore of great interest to
develop a tunable synthetic benchmark, the performance
of which we can relate to the performance of our applica-
tion codes. This requires that we develop a parametric
characterization of the performance behavior of scientific
application codes first, which will then lead us directly to
the design of such a synthetic benchmark.

 The initial assumption of this study is that the per-
formance behavior of codes can be characterized by a
small set of performance factors, which are specific to the
code and independent of the computer architecture. The
performance of a class of codes with similar characteris-
tic performance factors should then be closely related to
each other on different architectures. A synthetic bench-
mark implemented such that its execution profile could
be tuned by corresponding input parameters to match the
chosen characteristic performance factors, could then be
used as a proxy for the performance behavior of codes
with similar characteristic parameters. Therefore such a
benchmark can be used as a more realistic indicator of
achievable performance on existing or new platforms.
Since the design of the benchmark is only guided by the
application characterization methodology and is inde-
pendent of any specific architecture, the benchmark can
be used for a long time and across all platforms. As a
synthetic benchmark it greatly reduces maintenance and
provides increased portability. Due its compact code size
it also is substantially easier to use with simulators.

During the last decades memory access became the
dominant performance factor for many codes. Therefore
data access is the initial focus of our application perform-

ance characterization project (Apex). We developed a
performance characterization for memory access and a
corresponding benchmark � the memory access probe
(Apex-MAP). Our performance characterization is based
on assumptions about the relative importance of different
aspects of data access patterns. In order to show the va-
lidity of these assumptions, we selected five scientific
kernels and investigated their performance and the per-
formance of Apex-MAP on six different platforms. Cur-
rently these include the IBM Power3 (375MHz and
200MHz), Power4, Intel Xeon, AMD Opteron, and the
Cray X1. The kernels used are CG from the NAS bench-
mark suite, FFT, Nbody, and Radix Sorting from
SPLASH2, and dense Matrix Multiplication.

We also need to choose an appropriate measure for
how well our synthetic benchmark Apex-MAP approxi-
mates real application codes or how much of the intrinsic
properties of a real code have been captured by Apex-
MAP. Several different metrics have been adopted in
different studies in the past. Metrics used include func-
tion-level execution profiles [16], linkage distance ob-
tained through cluster analysis [10], cache-miss or hit
ratio [6,7,12,17], the squared Euclidean distance [18], or
statistical method [11]. For Apex-MAP we prefer to
choose a metric closely related to performance. Our met-
ric is the ratio of the average access time per memory
access between our synthetic program and the real code.
In the ideal case this ratio would always be one on all
platforms for any problem size.

The remainder of this paper is organized as follows.
Section 2 describes our application performance charac-
terization process. Section 3 discusses the implementa-
tion of Apex-MAP. We describe the six platforms and the
five kernels we selected in Section 4. The performance
results of APEX-Map and the results of our validation
study are discussed in section 5. Finally we summarize
our findings and describe related ongoing work.

2. Application Performance Characteri-
zation Methodology

Starting point of this project is to develop a charac-
terization of application performance behavior focusing
initially on data access. Several methods for characteriz-
ing the data access behavior of codes have been proposed
and studied previously [5,6,7,8,10,12,13,17,19]. D. Thie-
baut, J.L. Wolf, and H.S. Stone [6] describe a characteri-
zation of memory traces using hyperbolic probability
distributions with two parameters which correspond to
the working set size and the locality of the reference.
They measure the accuracy of this characterization in
terms of cache-miss ratios and lifetime functions (the
ratios of unique memory addresses to total memory ac-
cesses). Conte and Hwu [13,19] introduced the inter-
reference temporal density function and the inter-

reference spatial density function to measure temporal
and spatial locality. The inter-reference temporal density
function f(x) is defined as the probability of having x
unique references between successive references to the
same item. The inter-reference spatial density function
f(x) is defined as the probability that between references
to the same item, a reference to an item x units away oc-
curs. Recently, M. Wang [17] introduced a statistical
PQRS model to capture the temporal and spatial behavior
of the applications as well as the correlations between
them. These characterization methods are based on exe-
cution traces, which are affected by the specific compil-
ers and architectures used, and thus not architecture inde-
pendent. Most efforts to characterize codes are similarly
based on low-level observations on the system level and
reflect machine properties, rather than pure workload or
code properties. In contrast our project develops a hard-
ware independent characterization for code performance.

2.1 Main Factors of Performance
We assume that the data access of any code can be de-

scribed as several concurrent streams of addresses which
in turn can be characterized by a single, unique set of
performance related factors. As performance factors for
our characterization we chose:

• The regularity of the access pattern.
• The size of the data set accessed.
• The length of contiguous data access, which is

also referred to as Spatial Locality.
• The above average re-use of data items, re-

ferred to as Temporal Locality.
The definition of the first three seems straightforward,

while finding a truly hardware independent definition of
the temporal locality of a code proves to be challenging.
Several different methods to quantify temporal locality
have been proposed [5,6,7,8], but most of them are hard-
ware dependent or have other properties, which make
them unsuited for our purpose.

Regularity We distinguish only two extreme catego-
ries of regularity: random access and regular access.
Random access characterizes streams of addresses with-
out regularity in the addresses. Examples would be ad-
dress streams generated by pointer chasing or the address
stream of an indirectly accessed data array. Regular ac-
cess characterizes streams of addresses easily captured by
regular expressions. Typical example would be stride
access patterns or the stride one access to the index array
of an indirect access pattern. Most of our current work is
focused on code with irregular data access and we there-
fore ran most of our experiments using random access.

Data Set Size The amount of memory accessed M is
evidently an important factor influencing the perform-
ance of an address stream. Its impact on performance is

becoming more important with the increasing complexity
of memory hierarchies in modern system architectures.

Spatial Locality We characterize spatial locality by
the number of contiguous memory locations L accessed
in succession (e.g. vector-length). Many modern systems
benefit greatly from contiguous memory access patterns.

Temporal Locality and Re-Use To define the tempo-
ral locality of a code independent of hardware concepts
such as cache sizes is difficult at best. We start by look-
ing at the cumulative temporal distribution function of a
memory accesses stream. To arrive at a problem size
independent definition of temporal re-use we then ap-
proximate these temporal distribution functions by a
scale-invariant power distribution function. The shape
parameter (�) of the power distribution function is used
to quantify data reuse (0 <= � <=1). It turns out, that � is
closely related to a properly defined, scale-invariant re-
use number k, and thus allows for an easy interpretation.
First we define a re-use number in such a way, that it is
zero if the address stream in consideration accesses the
complete data set of size M with maximum distance be-
tween two accesses to any memory location. One exam-
ple for such an address stream can be generated by a sin-
gle stride one access to a data array of size M. All equiva-
lent address patterns can be generated from this pattern
by permutations of the addresses. Any other access pat-
tern would have access to at least one memory location
within less than M cycles. For each address X in the ad-
dress stream we now look at a window of the next M-1
addresses in the stream (Fig 1). Then we count how often
X is accessed within this window. We now define our re-
use number k as the average of all these counts over the
whole address stream.
Next we define the cumulative temporal distribution
function. Suppose N is the number of total memory ac-
cesses. Let X be the memory location of n-th memory
access (n <= N). If X has been accessed earlier and the
last access is the m-th memory access, then we say the
temporal distance for n-th memory access is n-m. If X has
not been accessed earlier, then we assume an infinite
repetition of the whole address stream. The temporal dis-
tance is then given by n + N � k and k is the location of
last appearance of memory location X in the address
stream. If X is only accessed one time, the temporal dis-
tance is N. The cumulative temporal distribution function
is defined using this temporal distance and show for each
temporal distance t the probability p, of accessing a
memory location again within the next t memory ac-
cesses. Temporal distances distribution functions are very
similar to the stack distances distribution functions [15]
and the inter-reference temporal distributions [19,13]
except that we count all the references instead of unique
references when computing the distance.

Fig. 1. Definition of temporal re-use

Fig. 2 displays the cumulative temporal distribution
for FFT for three sizes. The data set of 16KB has a total
of 784215 memory accesses. The reuse number for dis-
tance 1 is 49957, which gives a probability for immediate
reuse of 49957/784215 = 6.3%. To describe these cumu-
lative temporal distribution functions with a single num-
ber, we now approximate their shape by a generic func-
tion with only a single parameter other than N. By using a
power function with a single shape parameter we can
achieve such an approximation in a scale-invariant way.
In practice this leaves us with the question how to con-
struct a generic address stream with such a temporal dis-
tribution function. It turns out that an address stream gen-
erated with a power distributed random number generator
approximates such a distribution very closely.
We therefore decided to use a non-uniform power func-
tion random address stream, to approximate the perform-
ance behavior of the address stream of codes. It turns out
that the shape parameter � (0<=�<=1) of the power func-
tion is related to the previously defined re-use number k.
This can be seem by the existence of the fix-point of
p(M)=k/(k+1) for all possible address traces. The pa-
rameter � therefore defines temporal re-use as well as k
and can be directly used in its place. The smaller the
value of � is, the higher the re-use value k, and the higher
the temporal locality. A value of �=0 means the program
will access a single address repeatedly, while �=1 indi-
cates a uniform random memory access.

0.0

0.2

0.4

0.6

0.8

1.0

1 100 10,000 1,000,000 100,000,000

Temporal Distance

R
eu

se
 P

ro
ba

bi
lty

M=16KB
M=64KB
M=256KB

Fig. 2. Cumulative temporal distribution function
of FFT for different sizes.

2.2 Determining Parameter Values for Code
Characterization

Ideally we should be able to derive the parameters
characterizing a code by analyzing its address trace. In

k n

X

m

practice we end up with cumulative temporal distribution
functions and values of L and �, which depend on the
effects of compilers and architectures used. In order to
reduce such effects and to test the general validity of our
ideas, we decided to initially use a statistical back-fitting
procedure to find the characteristic parameters (�, L). On
all platforms, we run our test applications using various
data set sizes. Then, we compute the average time per
memory access using the total runtimes divided by the
total number of memory accesses. The total number of
memory accesses is obtained from a reference platform
(IBM Power3 using HPM toolkit [14]). Next, we run
Apex-MAP using a variety of parameters (M = memory
size used by codes; L = 1, 2, 4, �, 16384; α=0.001,
0.0025, 0.005, 0.01, �, 1.0). By this, we explore a very
large part our parameter space.

We now determine a single parameter set (L, α) for
each application, which fits the results on all systems
simultaneously best. Let y=(y1,y2, �, yn) represent the
list of application�s average access times for n different
data set sizes, x(L, �)=(x1,x2, �, xn) represent the corre-
sponding Apex-MAP outputs for parameter set (L, α).
We expect that a linear relationship between y and x(L, �),
i.e. y ≈ c x exists. The ideal case would be c=1, which
however is usually not the case. Most codes include mul-
tiple access streams and the effects of these streams mix
together. Imagine that one code has two access streams:
one stream accesses a small amount of data in the cache
while the other one accesses a large amount of data in the
main memory. The performance of the code will be to-
tally dominated by the second stream. In this situation, it
will be good approximation to use the second stream to
represent the code�s memory behavior. The average time
per memory access x however will be two times longer
than y.

Table 1
The global 2R for Radix (Columns: �; Rows: L).

0.001 0.0025 0.005 0.010 0.025 0.05 0.1 0.25 0.5 1.0

1 0.7 0.9 0.8 0.5 -0.7 -2.0 -3.3 -4.7 -5.6 -5.6
2 0.6 0.8 0.9 0.7 0.0 -1.0 -2.1 -3.5 -4.6 -4.6
4 0.5 0.7 0.8 0.8 0.3 -0.4 -1.5 -2.8 -3.5 -3.8
8 0.3 0.6 0.8 0.8 0.6 0.0 -0.7 -1.8 -2.6 -2.7

16 0.2 0.5 0.7 0.8 0.7 0.4 -0.2 -1.2 -1.7 -2.0
32 0.2 0.4 0.5 0.7 0.8 0.6 0.3 -0.3 -0.7 -0.8
64 0.1 0.3 0.4 0.6 0.8 0.7 0.6 0.3 0.1 0.0

256 0.0 0.1 0.2 0.3 0.5 0.7 0.8 0.7 0.6 0.6
1024 0.0 0.1 0.1 0.2 0.4 0.6 0.8 0.8 0.7 0.6
4096 0.0 0.1 0.1 0.3 0.5 0.7 0.8 0.7 0.6 0.6

16384 0.0 0.1 0.2 0.3 0.6 0.8 0.7 0.1 -0.4 -0.6
We then use linear regression to examine which x(L,�)

has the best relationship with y on all platforms. This is
done by computing the coefficient of determination R2
across all platforms and selecting the highest value. The
global R2 values for radix are shown in Table 1. Different
columns show different values of temporal reuse � and
rows different vector length L. Since we assume a re-

stricted linear relationship y=α x(L,�) (and not a general
linear model with intersection term y=α x(L,�) + b), the
values of R2 can be negative. However, no value can be
greater than 1. The closer the value to 1, the greater is the
degree of linear association between y and x(L,�). We now
chose the corresponding values (L, �) of the largest R2
value as characteristic parameters for the code. The re-
sults for our test kernels are shown in Table 2.

Regular access is described by only two parameters
(M, S), where S is the stride. In this case characteristic
parameters are determined mainly by code inspection.
We find that only the kernel MM-stride (described later)
needs to be characterized with a regular access pattern
and that S is equal to the matrix width of B in AB=C.

Table 2

The characterization parameters for the test ap-
plications.

3. Implementation of Apex-MAP
The synthetic benchmark, Apex-MAP, has six pa-

rameters. Four of them are from the application charac-
terization. They are the amount of memory accessed (M),
the temporal reuse of data (α), the vector length of data
access (L), and the stride width (S). We distinguish only
two extreme categories of regularity: random access and
regular access. If codes are characterized as random ac-
cess, Apex-MAP needs three parameters: M, L, and α. In
the regular case, it needs only two parameters M and S.
The other two parameters of Apex-MAP are the number
of times to repeat the experiment (N) and the index buffer
size (I) (for random access only). These parameters are
necessary for the implementation of Apex-MAP itself.

Fig. 3. The random memory access pattern of

Apex-MAP.
Apex-Map uses indexed access to simulate random

access streams as illustrated in Fig. 3. The random start-
ing addresses (X) are aligned by length L and generated
by a power distribution function controlled by the pa-
rameter α. Once an address is accessed, the following L
continuous addresses will also be accessed. The starting
addresses cannot be dynamically generated since the time
needed to generate an address is too long compared with
the memory access time. Therefore they have to be com-

 Radix FFT Nbody MM MM-Stride CG
L 1 4096 4096 8 1 1
α 0.0025 0.1 0.025 0.005 0.25 1

0

X

L L
M-1

X

puted in advance and stored in an index buffer. Here is
the core part of the Apex-Map code:
 for (i = 0; i < N; i++) {
 initIndexArray(I);
 CLOCK(time1);
 for (j = 0; j < I/4; j++) {
 pos = ind[j*4];
 pos1 = ind[j*4+1];
 pos2 = ind[j*4+2];
 pos3 = ind[j*4+3];
 for (k = 0; k < L; k++) {
 res0 += data[pos + k];
 res1 += data[pos1 + k];
 res2 += data[pos2 + k];
 res3 += data[pos3 + k];
 }
 }
 CLOCK(time2);
 }

The initIndexArray function will compute the random
starting addresses and fill them in an index buffer ind
whose length is set by parameter I. The default value for I
is 1024. The existence of this index array will influence
the cache and occupy load/store units. Thus it has to be
relatively small to reduce its impact on the average time
per memory access. However, it also has to be large
enough so that the measured time differences between
time1 and time2 are accurate. The elapsed time between
time1 and time2 is also corrected for the overhead of the
timer call CLOCK. The index loop is unrolled four times
as some compilers cannot automatically optimize the
loop well on some platforms. We have to hand-optimize
the loops by unrolling them to reduce compiler effects.

The main feature or our regular access pattern is
stride access. The following code illustrates this:

 for (i = 0; i < N; i++) {
 CLOCK (time1);
 for (k = 0; k < m ; k++) {
 for (j = k; j < M; j += S) {
 res0 += data[j];
 }
 }
 CLOCK (time2);
 }

Fig. 4. The regular memory access pattern of
Apex-MAP.

The first iteration starts from offset 0 and accesses the
data array with stride S. The next iteration starts from
offset 1 and so on as shown in Fig. 4. The reason to start
from different offsets in successive iterations is to ensure
that the access pattern uses the whole data array. The
output of Apex-MAP is the average access time per
memory access both in cycles and nanoseconds.

4. Test Platforms and Applications

4.1 Platforms
We selected six platforms using different processors,

including IBM Power3 running at 200MHz, and at
375MHz, Cray X1 at 800MHz (vector processor), IBM
Power4 at 1.3GHz, AMD Opteron at 1.6GHz, and Intel
Xeon at 2.8GHz. The design philosophy and implementa-
tions vary widely among these processors and thus pro-
vide a good test-bed for our project. Further details can
be found at the respective manufactures websites.

IBM Power3: Up to eight instructions can be exe-
cuted per cycle. It can prefetch up to four streams of data
from memory or L2 cache into L1 data-cache. A 256-
entry two-way set associative TLB is used to access 4KB
memory pages. The latency from L1 cache to register is 1
cycle with the width 2*8 bytes/cycle, from L2 to L1 is 6
to 7 cycles with the width 32 bytes/cycle, from memory
to L2 or L1 is ~35 cycles with 16 bytes/2 cycles.

IBM Power4: The Power4 chip contains two 64-bit
microprocessors, a interface controller, a 1.41MB L2
cache, a L3 cache directory, and other controllers. Eight
independent units execute instructions in parallel. A
processor is capable of tracking over 200 instructions in-
flight. It is capable of managing up to eight data cache
line requests to the L2 cache (and beyond). All data
stored to cache lines that exist in the store-through L1
data cache are also sent to the L2 cache. It supports up to
eight prefetch streams. Latency between registers and L1
is ~4 cycles; between registers and L2 ~14 cycles.

Intel Xeon: The Intel Xeon processor is based on the
Intel NetBurst micro-architecture. It has a deep twenty-
stage pipeline, allowing up to 126 instructions in flight,
48 loads and 24 stores in pipeline. The out-of-order exe-
cution core can dispatch up to six ops per cycle. The la-
tency of the L1 data cache is 2 cycles. The L2 cache is a
full-speed, unified on-die Advance Transfer Cache. It
supports a quad-pumped, scalable bus clock for 4X effec-
tive speed, delivering up to 3.2GB/s of bandwidth.

AMD Opteron: The Opteron is a three-way supersca-
lar processor. It�s control unit can fetch, decode, and is-
sue up to three instructions per cycle. The integer and
floating-point scheduler can simultaneously issue up to
nine micro-ops. The Opteron supports up to three coher-
ent HyperTransport links, which provide up to 19.2GB/s
peak bandwidth per processor, and has a 128-bit high-
performance DDR SDRAM memory controller.

Cray X1: The single-streaming processor (SSP) of
the X1, contains two vector pipes running at 800MHz.
Each SSP contains 32 vector registers holding 64 double-
precision words and can have up to 512 addresses simul-
taneously in flight. It contains a two-way out-of-order
superscalar processor running at 400MHz. The multi-
streaming processor (MSP) combines four SSPs into one

S
 0 1 M-1

logical computational unit. The four SSPs share a 2-way
set associative 2MB data Ecache, a unique feature for
vector architecture that allows extremely high bandwidth
(25-51 GB/S). Our results are generated on SSP.

4.2 Test Kernels
We select five scientific kernels for this study:
Radix: Sorts integer keys using the radix algorithm.

The radix size determines the number of iterations. In
each iteration it computes first the histograms and then
moves the keys according to the histograms. Two main
arrays are alternating used as source and destination. The
source data are read sequentially while the destination
data are written scattered. Access to the histogram is ran-
dom. The computational intensity (CI) is very low. Data
movement dominates the code and increasing the data set
size does not improve the CI.

FFT: A double-precision complex 1-dim FFT ob-
tained from SPLASH2 suite. The data set is an array of n
double-precision complex data points to be transformed,
and an array of double-precision complex data to be used
as roots of unity. There are total six steps: i) transpose
matrix, ii) perform 1-D FFTs individually on rows of size

n , iii) multiplying the elements of the resulting complex
matrix by the corresponding roots of unity, iv) transpose
matrix, v) perform 1-D FFTs on individual rows, vi)
transpose matrix. Without the transpose, the computa-
tional intensity is ~1.25 for n = 4K and slowly increasing
with larger data sets.

Matrix-Multiplication (MM) and MM-stride: Ma-
trix multiplication (CBA =*). The computational in-
tensity of this regular kernel is around 1 and has no rela-
tion with data set size. There are two standard ways to
program the code: one uses the sequential access (MM)
and the other uses stride access (MM-stride). This is im-
plemented by exchange the inner and outer loops. The
following code is used for MM-stride. By exchange the
loop j and loop k, we get MM. The performance of these
two are substantially different from each other and char-
acterized using different parameters.

For (i = 0; i < M; i++)
 For (j = 0; j < N; j++)
 For (k = 0; k < K; k++)
 C[i,j] += A[i,k] * B[k, j];

Nbody: Simulates the interaction of a system of bod-
ies in 3 dim over a number of time steps, using a hierar-
chical N-body method. Browsing the oct-tree and calcu-
lating the gravitational force consume most of the time.
Browsing the tree causes a lot of pointer tracing. How-
ever, the working set size is relatively small and the code
shows very good caching behavior. The computational
intensity is ~1.1 for 1k bodies and decrease gradually to
0.954 for 4M bodies.

CG: Solver for sparse linear systems using conjugate
gradient method obtained from NAS benchmark suite.

The main memory operations are random access to a
small data set and sequential access to a large data set at
the same time. The computational intensity is ~0.67.

5. Performance Results of Apex-MAP
We now analyze the ratios of the average access time

between Apex-MAP and our test kernels to determine to
what extent the performance of Apex-MAP can represent
their performance. In the ideal case the ratio for a given
kernel would not change with problem size and be =1. In
this case Apex-MAP would completely explain the scal-
ing behavior of the test codes. Considering the generality
of our methodology we consider it satisfactory achieving
a ±25% range. First we investigate, if a single random
access streams can represent the kernels. Fig. 5. � 10.
present the performance ratios for Radix, FFT, Nbody,
MM, MM-stride, and CG individually. The Y-axis is the
ratio of average access times. On the X-axis are the dif-
ferent memory sizes used by different problem sizes.
Each line represents all the matching problem sizes on
one specific platform. In the ideal case all lines are hori-
zontal and overlap, i.e., the application�s average mem-
ory access time can be accurately predicted by APEX-
Map. We notice that for Radix, Nbody, and FFT, all the
six lines are pretty close to Y=1 with almost all the points
falling into the range 0.8 ~ 1.2. For MM, the range on the
AMD Opteron becomes a little larger to 0.57 ~ 1.47.
However, the results for CG on smaller data set and MM-
Stride are not satisfactory. The ratios vary for MM-Stride
between 0.35 ~ 1.56 and for CG between 0.89 ~ 1.85.

The main access pattern of the stridden matrix multi-
plication is stride access for matrix B and no reuse before
the whole matrix has been accessed. For such codes, it
will be difficult to use random access stream to accu-
rately simulate the stride access and we use regular ac-
cess instead. Since different matrix sizes will lead to dif-
ferent stride size, the characterization parameters are di-
rectly related with data set sizes. S equals the width of
matrix B. Fig. 12. is the new ratio after using the regular
access to characterize the stridden Matrix Multiplication.

0.00

0.50

1.00

1.50

2.00

2.50

100 1,000 10,000 100,000 1,000,000
Memory Size (KB)

R
at

io

Power3(200MHZ) Power3(375MHz)
Power4(1.3GHz) Opteron(1.6GHz)
Xeon(2.8GHz) Cray X1(800MHz)

Fig. 5. The performance ratio for Radix using
one random access stream

0.00

0.50

1.00

1.50

2.00

2.50

100 1,000 10,000 100,000 1,000,000

Memory Size (KB)

R
at

io

Power3(200MHZ) Power3(375MHz)
Power4(1.3GHz) Opteron(1.6GHz)

Xeon(2.8GHz) Cray X1(800MHz)

 Fig. 6. The performance ratio for FFT using one
random access stream

There are three main streams in CG: the stride-1 ac-
cess to the large sparse matrix (column index and matrix-
data) and the random access to the smaller vector. By
only simulating the random access using Apex-MAP, we
see (Fig. 10.) that the ratios are relatively high on Intel
Xeon and AMD Opteron platforms for smaller data sets,
but they fit well on the other platforms. This is mainly
due to the inefficiency of these platforms for large se-
quential access patterns. Their average access time for
large sequential access is higher than the average access
time for the random access to a smaller data set. The ef-
fect of the sequential access cannot be ignored on these
two processors. On the other platforms the random access
dominates the average access times and sequential access
times are negligible compared with random access times.
Overall we find that the performance approximation by
Apex-MAP can be improved by averaging the results of
two different streams, one random access as above and
one stride-1 access. The results for an approximation
with two access streams are shown Fig. 11.

0.00

0.50

1.00

1.50

2.00

2.50

100 1,000 10,000 100,000 1,000,000
Memory Size (KB)

R
at

io

Power3(200MHZ) Power3(375MHz)

Power4(1.3GHz) Opteron(1.6GHz)
Xeon(2.8GHz) Cray X1(800MHz)

Fig. 7. The performance ratio for Nbody using
one random access stream

0.00

0.50

1.00

1.50

2.00

2.50

10 100 1,000 10,000 100,000
Memory Size (KB)

R
at

io

Power3(200MHZ) Power3(375MHz)
Power4(1.3GHz) Opteron(1.6GHz)
Xeon(2.8GHz) Cray X1(800MHz)

Fig. 8. The performance ratio for MM using one
random access stream

0.00

0.50

1.00

1.50

2.00

2.50

10 100 1,000 10,000 100,000
Memory Size (KB)

R
at

io

Power3(200MHZ) Power3(375MHz)
Power4(1.3GHz) Opteron(1.6GHz)
Xeon(2.8GHz) Cray X1(800MHz)

Fig. 9. The performance ratio for MM-Stride us-
ing one random access stream

6. Summary and Ongoing Work
In this paper, we describe a method to develop a tunable,
synthetic benchmark, which can be used to approximate
the performance of application codes. First a hardware
independent performance characterization of data access
patterns is developed. This characterization is used to
implement a synthetic benchmark (Apex-MAP) with a
data access behavior tunable by the parameters of the
performance characterization. In this framework codes
are characterized by a small set of parameters with the
goal that the performance of the Apex-MAP benchmark
operated with these parameters will reflect their perform-
ance. The validity and accuracy of this approach is meas-
ured on six platforms using five scientific kernels. In
order to capture the performance scaling of the applica-
tions with 25%, we need only a single random access
stream for Radix, FFT, and Nbody, a single regular ac-
cess stream for Matrix Multiplication, and two streams
(one random access and one regular access) for CG.

Our initial implementation and investigations were
done for sequential execution. However, we have devel-
oped our characterization and its parameters so that it can
be extended directly to include inter-process communica-
tion. The parallel version is currently under development.

0.00

0.50

1.00

1.50

2.00

2.50

10,000 100,000 1,000,000
Memory Size (KB)

R
at

io

Power3(200MHZ) Power3(375MHz)

Power4(1.3GHz) Opteron(1.6GHz)

Xeon(2.8GHz) Cray X1(800MHz)

Fig. 10. The performance ratio for CG using one
random access stream

0.00

0.50

1.00

1.50

2.00

2.50

10,000 100,000 1,000,000

Memory Size (KB)

R
at

io

Power3(200MHZ) Power3(375MHz)

Power4(1.3GHz) Opteron(1.6GHz)

Xeon(2.8GHz) Cray X1(800MHz)

Fig. 11. The performance ratio for CG using two
access stream

0.00

0.50

1.00

1.50

2.00

2.50

10 100 1,000 10,000 100,000

Memory Size (KB)

R
at

io

Power3(200MHZ) Power3(375MHz)

Power4(1.3GHz) Opteron(1.6GHz)
Xeon(2.8GHz) Cray X1(800MHz)

Fig. 12. The performance ratio for MM-Stride
using one regular stream

References

1. Linpack, http://www.top500.org/lists/linpack.php.
2. NAS Parallel Benchmarks.
http://www.nas.nasa.gov/Software/NPB/.
3. ParkBench, http://www.netlib.org/parkbench.
4. Application Performance Matrix,
http://www.krellinst.org/matrix/
5. Elizabeth S. Sorenson, �Cache Characterization and
Performance studies Using Locality Surfaces�.
http://citeseer.nj.nec.com/sorensen03cache.html.

6. Dominique Thiebaut, Joel L Wolf, and Harold S.
Stone. �Synthetic traces for trace-driven simulation of
cache memories�. IEEE Transactions on Computers,
41(4):388-410, April 1992.
7. Kathryn S. Mckinley and Olivier Temam. �Quantify-
ing loop nest locality using SPEC�95 and the perfect
benchmarks�. ACM Transactions on Computer Systems,
17(4):288-336, November, 1999.
8. F.J. Sanchez and A. Gonzalez. �Data locality analysis
of the SPECFP�95�. Digest of Performance Analysis and
its Impact on Design (PAID) Workshop, p 78-84, 1998.
9. Stanford Parallel Applications for Shared Memory,
http://www-flash.stanford.edu/apps/SPLASH/.
10. Lieven Ecckhout, Hans Vandierendonck, and Koen
De Bosschere, �Designing Computer Architecture Re-
search Workloads�, IEEE Computer, Vol. 36, No. 2, Feb-
ruary 2003, pp. 65-71
11. A.K. Agrawala and J.M.Mohr, �A model for work-
load characterization�, Proceedings of the 1975 sympo-
sium on simulation of computer systems, August 1975.
12. Wing Shing Wong, and Robert J.T. Morris, �Bench-
mark Synthesis Using the LRU Cache Hit Function�,
IEEE Trans. on Computers, Vol 37, No. 6, June 1988.
13. L. K. John, P. Vasudevan, and J. Sabarinathan,
�Workload Charaterization: Motivation, Goals and
Methodology�, in Workload Characterization: Method-
ology and Case Studies, pp 3-14, IEEE Comp.Soc., 1999.
14. Hardware Performance Monitor (HPM) Toolkit,
http://hpcf.nersc.gov/software/ibm/hpmcount/
15. Mark Brehob, Richard Enbody, �An Analytical
model of Locality and Caching�, Technical Report,
Michigan State University, MSU-CSE-99-31.
16. A.J. KleinOsowski and D.J. Lilja, �MinneSPEC: A
New SPEC Benchmark Workload for Simulation �
Based Computer Architecture Research�, Computer Ar-
chitecture Letters, June 2002, pp 10-13.
17. M. Wang, A. Ailamaki, C. Faloutsos, �Capturing the
Spatio-Temporal Behavior of Real Traffic Data�, Per-
formance 2002 (IFIP Intl. Symp. on Comp. Performance
Modeling, Measurement, and Evaluation), Rome, Italy.
18. R. H. Saavedra and A. J. Smith, �Analysis of
Benchmark Characteristics and Benchmark Performance
Prediction�, ACM Trans. Computer Systems, Vol. 14,
No. 4, pp. 344-384.
19. T. Conte and W-m W. Hwu, �Benchmark Charac-
terization for Experimental System Evaluation�, Pro-
ceedings of the 1990 Hawaii International Conference
on System Sciences (HICSS), Vol. 1, Architecture
Track, pp. 6-18.
20. Standard Performance Evaluation Corporation,
http://www.specbench.org

